设为首页  | 收藏本页 欢迎您来访! 2019年06月27日 星期四
行业知识百科

阿尔法围棋(AlphaGo)人工智能程序

贡献者:行业知识百科


阿尔法围棋(AlphaGo)人工智能程序

阿尔法围棋(AlphaGo)是一款围棋人工智能程序,由位于英国伦敦的谷歌(Google)旗下DeepMind公司的戴维·西尔弗、艾佳·黄和戴密斯·哈萨比斯与他们的团队开发,这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。2015年10月阿尔法围棋以5:0完胜欧洲围棋冠军、职业二段选手樊麾;2016年3月挑战世界围棋冠军、职业九段选手李世石。

那什么是人工智能呢?抽掉人的欲望和激情,再抽掉人的肉体限制并把剩下的理智力量无限放大那基本上就可以认为是人工智能会有的样子了。无限放大是说它可以同时记忆五千年的历史,同时操控五千台机器,而不在像人类只有有限的记忆和计算能力,并且很难心分二用。

人工智能历经三起两落,最近这次浪潮则是互联网和云计算带起来的。如果要从2010年,时任斯坦福大学教授的吴恩达加入谷歌开发团队XLab开始计算,那这次的热潮兴起也不过只有5~6年。互联网和云计算之所以让深度学习得以复兴,其关键点有两个:一个是互联网提供了海量的数据;一个是云提供了远超以往的计算能力。这两点很像燃料与引擎,它们叠加到一起就可以让车跑的飞快。

深度学习在图像识别和语音识别上效果显著,但并不能突破上面说的人工智能的定义。它可以通过大量的人脸的数据进行训练,接下来精确的识别你的脸是不是你的,但它不能想象一个从来没有过的场景。所以说基于数据和深度学习的人工智能更像是已知领域的专家,但并没能力像马克思那样去凭空创造出一个体系。

阿尔法围棋(AlphaGo)是一款围棋人工智能程序。这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。

阿尔法围棋深度学习

阿尔法围棋(AlphaGo)的主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。 

阿尔法围棋两个大脑

阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。

这些网络通过反复训练来检查结果,再去校对调整参数,去让下次执行更好。这个处理器有大量的随机性元素,所以人们是不可能精确知道网络是如何“思考”的,但更多的训练后能让它进化到更好。

第一大脑:落子选择器 (Move Picker)

阿尔法围棋(AlphaGo)的第一个神经网络大脑是“监督学习的策略网络(Policy Network)” ,观察棋盘布局企图找到最佳的下一步。事实上,它预测每一个合法下一步的最佳概率,那么最前面猜测的就是那个概率最高的。这可以理解成“落子选择器”。

第二大脑:棋局评估器 (Position Evaluator)

阿尔法围棋(AlphaGo)的第二个大脑相对于落子选择器是回答另一个问题。不是去猜测具体下一步,它预测每一个棋手赢棋的可能,在给定棋子位置情况下。这“局面评估器”就是“价值网络(Value Network)”,通过整体局面判断来辅助落子选择器。这个判断仅仅是大概的,但对于阅读速度提高很有帮助。通过分类潜在的未来局面的“好”与“坏”,AlphaGo能够决定是否通过特殊变种去深入阅读。如果局面评估器说这个特殊变种不行,那么AI就跳过阅读在这一条线上的任何更多落子。

据国际顶尖期刊《自然》封面文章报道,谷歌研究者开发的名为“阿尔法围棋”(Alpha Go)的人工智能机器人,在没有任何让子的情况下,以5:0完胜欧洲围棋冠军、职业二段选手樊麾。在围棋人工智能领域,实现了一次史无前例的突破。计算机程序能在不让子的情况下,在完整的围棋游戏中击败专业选手,这是第一次。此前,研究者也让“阿尔法围棋”和其他的围棋人工智能机器人进行了较量,在总计495局中只输了一局,胜率是99.8%。它甚至尝试了让4子对阵CrazyStone、Zen和Pachi三个先进的人工智能机器人,胜率分别是77%、86%和99%。

阿尔法围棋程序的下一个挑战对象是世界围棋冠军李世石。这场人工智能与人类的博弈于2016年3月份在首尔举行,奖金是由Google提供的100万美金。

我认为李世石赢AlphaGo的几率要远大于输的几率。王小川的完胜预测非常奇怪,因为即使这次李世石输了,也不意味着人工智能真的就可以在围棋上战胜人类。这里的本质问题是其实是三个:什么是人,什么是深度学习下的人工智能,什么是围棋。完成这三者的界定就可以定性的猜测李世石和人工智能在围棋上的输赢概率。

下一词条: 虚拟现实技术具体应用的行业有哪些?
上一词条: 黄马甲快递公司与阿里菜鸟网络达成战略合作
开放词条: 阿尔法围棋(AlphaGo)人工智能程序
开放分类 : 首页 > 行业知识百科 > 其它行业
现在开始分享此知识!
关于行业知识百科
1. 亚洲行业网(www.hangye.asia),致力于建设成为亚洲较具影响力的行业门户网站。
2. 亚洲行业网行业知识百科栏目是关于50来个行业的一个知识集合,聚合了关于各行业的一些实用知识,包含大量丰富的各行业原始资料。